分销转移(DS)是一个常见的问题,可恶化学习机器的性能。为了克服这个问题,我们假设现实世界的分布是由基本分布组成的,这些分布在不同域之间保持不变。我们将其称为不变的基本分布(即)假设。因此,这种不变性使知识转移到看不见的域。为了利用该假设在域概括(DG)中,我们开发了一个由门域单位(GDU)组成的模块化神经网络层。每个GDU都学会了单个基本领域的嵌入,使我们能够在训练过程中编码域相似性。在推断期间,GDU在观察和每个相应的基本分布之间进行了计算相似性,然后将其用于形成学习机的加权集合。由于我们的层是经过反向传播的训练,因此可以轻松地集成到现有的深度学习框架中。我们对Digits5,ECG,CamelyOn17,IwildCam和FMOW的评估显示出对训练的目标域的性能有显着改善,而无需从目标域访问数据。这一发现支持了即现实世界数据分布中的假设。
translated by 谷歌翻译